215 research outputs found

    Four theorems on the psychometric function

    Get PDF
    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by [Formula: see text], where [Formula: see text] is the β of the Weibull function that fits best to the cumulative noise distribution, and [Formula: see text] depends on the transducer. We derive general expressions for [Formula: see text] and [Formula: see text], from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when [Formula: see text], [Formula: see text]. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian

    Binocular summation and other forms of non-dominant eye contribution in individuals with strabismic amblyopia during habitual viewing

    Get PDF
    YesAdults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals

    Enhanced text spacing improves reading performance in individuals with macular disease

    Get PDF
    The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al

    The Lingering Effects of an Artificial Blind Spot

    Get PDF
    BACKGROUND: When steady fixation is maintained on the centre of a large patch of texture, holes in the periphery of the texture rapidly fade from awareness, producing artificial scotomata (i.e., invisible areas of reduced vision, like the natural ‘blind spot’). There has been considerable controversy about whether this apparent ‘filling in’ depends on a low-level or high-level visual process. Evidence for an active process is that when the texture around the scotomata is suddenly removed, phantasms of the texture appear within the previous scotomata. METHODOLOGY: To see if these phantasms were equivalent to real low-level signals, we measured contrast discrimination for real dynamic texture patches presented on top of the phantasms. PRINCIPAL FINDINGS: Phantasm intensity varied with adapting contrast. Contrast discrimination depended on both (real) pedestal contrast and phantasm intensity, in a manner indicative of a common sensory threshold. The phantasms showed inter-ocular transfer, proving that their effects are cortical rather than retinal. CONCLUSIONS: We show that this effect is consistent with a tonic spreading of the adapting texture into the scotomata, coupled with some overall loss of sensitivity. Our results support the view that ‘filling in’ happens at an early stage of visual processing, quite possibly in primary visual cortex (V1)

    Determinants of Dwell Time in Visual Search: Similarity or Perceptual Difficulty?

    Get PDF
    The present study examined the factors that determine the dwell times in a visual search task, that is, the duration the gaze remains fixated on an object. It has been suggested that an item’s similarity to the search target should be an important determiner of dwell times, because dwell times are taken to reflect the time needed to reject the item as a distractor, and such discriminations are supposed to be harder the more similar an item is to the search target. In line with this similarity view, a previous study shows that, in search for a target ring of thin line-width, dwell times on thin linewidth Landolt C’s distractors were longer than dwell times on Landolt C’s with thick or medium linewidth. However, dwell times may have been longer on thin Landolt C’s because the thin line-width made it harder to detect whether the stimuli had a gap or not. Thus, it is an open question whether dwell times on thin line-width distractors were longer because they were similar to the target or because the perceptual decision was more difficult. The present study de-coupled similarity from perceptual difficulty, by measuring dwell times on thin, medium and thick line-width distractors when the target had thin, medium or thick line-width. The results showed that dwell times were longer on target-similar than target-dissimilar stimuli across all target conditions and regardless of the line-width. It is concluded that prior findings of longer dwell times on thin linewidth-distractors can clearly be attributed to target similarity. As will be discussed towards the end, the finding of similarity effects on dwell times has important implications for current theories of visual search and eye movement control

    Contrast and Phase Combination in Binocular Vision

    Get PDF
    BACKGROUND: How the visual system combines information from the two eyes to form a unitary binocular representation of the external world is a fundamental question in vision science that has been the focus of many psychophysical and physiological investigations. Ding & Sperling (2006) measured perceived phase of the cyclopean image, and developed a binocular combination model in which each eye exerts gain control on the other eye's signal and over the other eye's gain control. Critically, the relative phase of the monocular sine-waves plays a central role. METHODOLOGY/PRINCIPAL FINDINGS: We used the Ding-Sperling paradigm but measured both the perceived contrast and phase of cyclopean images in three hundred and eighty combinations of base contrast, interocular contrast ratio, eye origin of the probe, and interocular phase difference. We found that the perceived contrast of the cyclopean image was independent of the relative phase of the two monocular gratings, although the perceived phase depended on the relative phase and contrast ratio of the monocular images. We developed a new multi-pathway contrast-gain control model (MCM) that elaborates the Ding-Sperling binocular combination model in two ways: (1) phase and contrast of the cyclopean images are computed in separate pathways, although with shared cross-eye contrast-gain control; and (2) phase-independent local energy from the two monocular images are used in binocular contrast combination. With three free parameters, the model yielded an excellent account of data from all the experimental conditions. CONCLUSIONS/SIGNIFICANCE: Binocular phase combination depends on the relative phase and contrast ratio of the monocular images but binocular contrast combination is phase-invariant. Our findings suggest the involvement of at least two separate pathways in binocular combination

    Parts, Wholes, and Context in Reading: A Triple Dissociation

    Get PDF
    Research in object recognition has tried to distinguish holistic recognition from recognition by parts. One can also guess an object from its context. Words are objects, and how we recognize them is the core question of reading research. Do fast readers rely most on letter-by-letter decoding (i.e., recognition by parts), whole word shape, or sentence context? We manipulated the text to selectively knock out each source of information while sparing the others. Surprisingly, the effects of the knockouts on reading rate reveal a triple dissociation. Each reading process always contributes the same number of words per minute, regardless of whether the other processes are operating

    Grid-texture mechanisms in human vision:contrast detection of regular sparse micro-patterns requires specialist templates

    Get PDF
    Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures

    Structural Basis and Kinetics of Force-Induced Conformational Changes of an αA Domain-Containing Integrin

    Get PDF
    Integrin α(L)β₂ (lymphocyte function-associated antigen, LFA-1) bears force upon binding to its ligand intercellular adhesion molecule 1 (ICAM-1) when a leukocyte adheres to vascular endothelium or an antigen presenting cell (APC) during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be regulated by force. Three conformations of the LFA-1 αA domain, determined by the position of its α₇-helix, have been suggested to correspond to three different affinity states for ligand binding.The kinetics of the force-driven transitions between these conformations has not been defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular dynamics (SMD) simulations, that the αA domain was successively transitioned through three distinct conformations upon pulling the C-terminus of its α₇-helix. Based on these sequential transitions, we have constructed a mathematical model to describe the coupling between the αA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was accelerated by pulling it via an engaged ICAM-1.Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 αA domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations for force-stabilization of LFA-1/ICAM-1 interaction

    Hybrid video quality prediction: reviewing video quality measurement for widening application scope

    Get PDF
    A tremendous number of objective video quality measurement algorithms have been developed during the last two decades. Most of them either measure a very limited aspect of the perceived video quality or they measure broad ranges of quality with limited prediction accuracy. This paper lists several perceptual artifacts that may be computationally measured in an isolated algorithm and some of the modeling approaches that have been proposed to predict the resulting quality from those algorithms. These algorithms usually have a very limited application scope but have been verified carefully. The paper continues with a review of some standardized and well-known video quality measurement algorithms that are meant for a wide range of applications, thus have a larger scope. Their individual artifacts prediction accuracy is usually lower but some of them were validated to perform sufficiently well for standardization. Several difficulties and shortcomings in developing a general purpose model with high prediction performance are identified such as a common objective quality scale or the behavior of individual indicators when confronted with stimuli that are out of their prediction scope. The paper concludes with a systematic framework approach to tackle the development of a hybrid video quality measurement in a joint research collaboration.Polish National Centre for Research and Development (NCRD) SP/I/1/77065/10, Swedish Governmental Agency for Innovation Systems (Vinnova
    corecore